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Summary

Robustness of nonlinear systems can be analyzed by computing robust forward
invariant sets (RFISs). Knowledge of the smallest RFIS of a system, can help analyze
system performance under perturbations. A novel algorithm is developed to com-
pute an approximation of the smallest RFIS for two-dimensional nonlinear systems
subjected to a bounded additive disturbance. The problem of computing an RFIS is
formulated as a path planning problem, and the algorithm developed plans a path
which iteratively converges to the boundary of an RFIS. Rigorousmathematical anal-
ysis shows that the proposed algorithm terminates in a finite number of iterations,
and that the output of the proposed algorithm is an RFIS. Simulations are presented
to illustrate the proposed algorithm, and to support the mathematical results. This
work may aid future development, for use with higher dimensional systems.
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1 INTRODUCTION

System outputs are often affected by disturbances. It is not necessarily a trivial task to establish a performance bound on the
performance of a nonlinear system, e.g. for adaptive systems [20]. System performance in the presence of additive disturbances
can be obtained using input-to-state-stability (ISS) [19] where the input represents a given disturbance. This may lead to a
conservative estimate of system performance, because the shape of a ball corresponding to a particular norm may not always
be identical to the shape of a set within which the system states stay. This can be understood as follows. The unit circles for
few different norms are shown in Fig. 1. Also from [15] it can be seen that the for a system of the form ẋ = f (t, x, u) such
a system is called ISS if there is a class  function �, and a class  function  such that ‖ x(t) ‖ ≤ �

(

‖

‖

x(t0) ‖‖ , t − t0
)

+

(

supt0≤�≤t ‖ u(�) ‖
)

. For a nonlinear system affected by additive disturbances, as is the subject for this work, the input u can be
replaced by the disturbance, then it is quickly apparent that any system state bounds based on the above mentioned ISS criteria
involves an upper-bound dependent on the norm of the disturbance. This in addition to the shapes of unit circles shown in Fig. 1
is sufficient to convince one that there may be cases where an invariant set for a system, which may be used to evaluate system
performance, may lie within sets shaped similar to the sets shown in Fig. 1. And so using the definition of ISS, and not explicitly
finding the shape of such an invariant set may leave significant room for a conservative estimate of a system’s performance
bound.
A forward invariant set of a given dynamical system, is a set such that all trajectories of the given systemwith initial conditions

x(t0) within this set remain in the set at all future times t ≥ t0. A robust forward invariant set (RFIS), is a forward invariant set
for a given dynamical system in the presence of a disturbance of known bounded magnitude. If the smallest RFIS can be found
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FIGURE 1 Figure showing unit circles for different norms.

around an equilibrium point of a given system, then this RFIS provides the least conservative system performance estimate
around that equilibrium point in the presence of disturbances. This is because system performance bounds can be formulated
as bounds on system states, and the smallest RFIS may be smaller than a ball corresponding to a particular norm used in the
definition of ISS.
Work on computing RFISs exists for linear systems [16], [26]. Authors in [16] develop procedures to compute disturbance

invariant (d-invariant) sets for discrete time linear time-invariant systems, where the disturbance inputs belong to a compact
set. The work [26] deals with robust control invariant sets for discrete time linear systems with bounded additive disturbances,
and shows that existence of a robust control invariant set can be verified by solving a convex optimization problem. Literature
exists for computing polyhedral invariant sets for discrete-time linear systems [6], [7]. Computing robust control invariant sets
for piecewise affine systems has been addressed by [1]. The authors in [4] use Newton’s method and the secant method to find
zeros for set-valued maps, and use this technique in [3] to find invariant sets for dynamical systems. Recent results exist [27],
[28] for computing polyhedral invariant sets, however these are developed for discrete time linear autonomous systems. Finding
the smallest RFIS, has similarities with estimating the shape and size of the domain of attraction of a given system. For a
review of techniques used for domain of attraction estimation, readers are directed to [23, 21]. It is worth mentioning that use
of sum-of-squares polynomials, along with optimization approaches has been widely used for computing invariant sets in the
literature.
Work related to ours exists in [12], in which the problem of computing extremal trajectories and associated controllers is

considered for a class of continuous-time systems with given initial conditions. Also, [11] deals with the largest estimate of the
robust domain of attraction (LERDA), via the use of Lyapunov functions, and sum-of-squares techniques. Further, [34] deals
with developing a numerical sampling-based algorithm for computing largest tolerable disturbance sets such that certain state
constraints are satisfied. Our work is very closely related to [2], where the foundations of viability theory are provided. Viability
is a special case of invariance, and the concept of an invariance envelope [2] is similar to the smallest RFIS that our work aims
to compute. Further [29] shows that the viability kernel can be approximated by a sequence of discrete viability kernels, for a
certain type of differential inclusions. This approach is similar to our work, where the algorithm proposed iteratively produces
estimates of an RFIS, thus producing a sequence of sets which ideally converge to the required smallest RFIS. Estimation of
reachable sets is another area of work related to the subject of this paper. Reachable set estimation deals with the estimation of
a set containing all possible reachable states of a system given a set of initial states. Results related to reachable set estimation
exist for linear systems [37], unmodeled systems via data driven approaches [10], and also for nonlinear systems of the form
ẋ = f (x) unaffected by disturbances [35]. Earlier mentioned sum-of-squares approaches also find applications in computing
barrier certificates for obstacle avoidance [5], and for computing “funnels” [17] used for guaranteeing system performancewithin
given bounds in the presence of disturbances.
A motivation for this work is related to model predictive control (MPC) [25], which may require the use of specialized or

set-based [31] techniques to develop a controller meeting desired requirements [9]. As observed in [30], [32], knowledge of
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the domain of attraction of a system, or the ability to estimate the shape and size of polyhedral invariant sets, is beneficial for
MPC design. There is also work related to systems with non-ISS unmodeled dynamics [14], which could benefit from set-based
performance evaluation that does not rely on ISS. More specifically, our work is inspired by the curve-tracking problem [36],
which is important to path-following control of autonomous vehicles. Curve tracking controllers have been used for applications
such as obstacle avoidance using wheeled robots, and marine sampling [22]. These controllers are robust to real world distur-
bances, which is justified in [19], [18] by using tools like ISS. The authors in [19] analytically find hexagonal RFISs for the
curve tracking problem.
The novelty of our work is that the problem of finding the boundary of an approximation of the smallest RFIS is formulated

as a path planning problem. Path planning algorithms, such as the A∗ [13] algorithm, are well known to reduce computational
effort, so we use the A∗ algorithm as a part of the proposed RFIS computation algorithm. Also, the proposed RFIS computation
algorithm is able to find an RFIS for general two-dimensional (2D) nonlinear systems with bounded additive disturbances.
Although our work deals with two dimensional systems, it is worth mentioning that creating an algorithm for finding the

shape of the smallest RFIS is not a trivial task even for a two dimensional system affected by disturbances. The most significant
contribution of this work is the ability to generate an estimate of the shape and size of the least conservative RFIS for 2D
nonlinear systems with bounded additive disturbances. This is helpful for generating the tightest performance bounds for such
nonlinear systems, which is an open problem with significant practical and theoretical value. We use path planning algorithms,
and do not rely on Lyapunov based approaches or sum-of-squares relaxations based approaches, because as documented in [8],
such approaches can provide conservative results. Generalizing this work to n-dimensional systems, and a detailed performance
comparison with other approaches is outside the scope of this work and is left for future efforts. Preliminary results, and problem
formulations exist in our previous efforts [23], [21]. In comparison to our earlier work, the specific contributions of this paper
are as follows. In [23] only a preliminary formulation allowing the use of path planning algorithms for computing RFISs is
presented with preliminary versions of some proofs. In [21] the above mentioned formulation is cleaned up, and it is shown that
the proposed algorithm appears to produce correct shapes. In the current work, the notation used is further cleaned up. Also in
[23, 21] a specific disturbance function appears to be used in the mathematical formulation, and in the result. In this paper, the
formulation is altered so that no specific form of a disturbance function is required, but only discrete values/measurements of the
disturbance function are required. This is also shown in the results where the RFIS computation algorithm produces results in the
presence of different bounded functions used as the additive disturbance functions affecting the system dynamics. Further, for
the first time, conditions on the system dynamics, and on the disturbance function and grid discretization are explicitly provided
for achieving an output from the proposed algorithm that is an RFIS.
This paper is organized as follows. The required mathematical notations and definitions are presented in Section 2. The

problem formulation is presented in Section 3. Details related to the proposed algorithm are presented in Section 4. Mathemat-
ical results are presented in Section 5. Simulation results are presented in Section 6. Followed by a concluding summary and
discussion of future possibilities in Section 7.
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FIGURE 2 (a) A positively oriented simple closed curve is shown formed by segments joining vertices p0,⋯ , p4. Normal
vectors N0,⋯ ,N4 are shown at intermediate points j0,⋯ , j4 along these segments. Point x is lying in the interior region of a
set whose boundary is a positively oriented simple closed curve, ⟨x − ji,Ni⟩ ≥ 0 for all i ∈ {0, 1, 2, 3, 4}. (b) Point y is lying in
the exterior of a set whose boundary is a positively oriented simple closed curve, ⟨y − j4,N4⟩ < 0. (c) Convention followed for
measuring the angle a vector makes with the normal vector at a given point.
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2 MATHEMATICAL PRELIMINARIES

Consider the system ẋ(t) = f (x(t)) + �(t). Here f ∶ ℝ2 → ℝ2. Also, � ∶ [0,+∞) →  , and  ⊂ ℝ2 is a compact set. Here
x(t) is a solution to ẋ(t) = f (x(t)) + �(t). Further, f (⋅) represents system dynamics, and �(⋅) is a bounded disturbance. For
computational simplicity, the set  is defined as [−�0, �0] × [−�0, �0], for some known value �0 ∈ [0,+∞). This box structure
for  is not essential, and can be relaxed. The definition of an RFIS is given as below.

Definition 1 (Robust forward invariant set). A set  ⊂ ℝn is an RFIS, if for all initial conditions x(t0) ∈  , and all �(t) ∈ 
the solution x(t) ∈  for all t > t0.

A connected curve that does not cross over itself is called a simple closed curve. A simple closed curve is defined to be
positively oriented if the interior region enclosed by such a curve lies to the left as the curve is traced anticlockwise. Given a
point p0 ∈ ℝ2 on a positively oriented simple closed curve, suppose one arrives at point p1 by tracing the curve anticlockwise.
The tangent vector at p0 is given by the vector lim

‖
p1−p0 ‖→0(p1−p0). The normal vector at p0 is obtained by rotating the tangent

vector anticlockwise through �∕2 radians. Such a normal vector is said to point towards the ‘left’, or towards the interior region
of the given positively oriented simple closed curve, at point p0. Figure 2 provides an illustration of the above terms related to
a simple closed curve. Given two points a and b belonging to ℝ2, let seg (a; b) denote the line segment joining points a, and b.
A set S ∈ ℝn is a star-shaped set if there is a x̄ ∈ S such that for all x ∈ S, seg (x̄; x) lies in S.
Let P = {p1,⋯ , pn} andQ = {q1,⋯ , qn} be two sequences of equal length n consisting of points pi and qj ∈ ℝ2 respectively.

Let the distance between sequences P and Q be d2(P ,Q) =
∑n
l=1

‖

‖

pl − ql ‖‖2.

3 PROBLEM FORMULATION

In this section the problem of finding the smallest RFIS is formulated, as an optimization problem.

3.1 Problem statement
Using the notation and definitions in Section 2 the problem of interest to this work is stated as follows. Consider a system of the
form

ẋ(t) = f (x(t)) + �(t) (1)

where f (x), �(t) are Lipschitz locally in x ∈ , globally in t ∈ ℝ respectively. The function �(t) is not known, but
�(t) ∈ [−�0, �0] × [−�0, �0], and �0 is known. Starting from an initial guess B ⊆ , find the smallest RFIS (see assumption 1)
for the system in (1). The set  is the region of interest. Functions f (⋅), �(⋅) are assumed Lipschitz, because this is required for
uniqueness of solutions, which is needed for the existence of an invariant set [8, 33, 2].

Assumption 1. We assume that the smallest RFIS for (1) with disturbance �(⋅) valued in [−�0, �0] × [−�0, �0] exists as a star-
shaped RFIS contained inB. The smallest RFIS has the smallest area among all RFIS inB, and has a boundary that is a positively
oriented simple closed curve.

For any system of the form in (1), if there is a domain of interest ∈ ℝ2 which contains invariant sets, then it is reasonable to
assume that one such invariant set will have smallest area. The boundary of such a set can be approximated by a piecewise linear
closed curve (see Figure 3(a)). Details related to the choice of constructing star-shaped RFISs, and whether B is needed to be
invariant or not, are provided further in the paper. Note that conditions for existence of RFISs, or smallest RFISs are beyond the
scope of this paper, and not of interest to the material at hand. The focus of this paper is producing a computational algorithm
for finding RFISs, and providing appropriate output to the user if an RFIS can, or cannot be found by the proposed algorithm in
an initially guessed set B.

3.2 Motivation for using star-shaped sets and path-planning algorithms
The literature [24] has results with the ‘contingent cone’ (or tangent cone) S (x)which uses distance between sets to find convex
invariant sets for systems of the form ẋ(t) = f (x(t)), with the assumption that solutions are unique. This result holds for non-
convex sets [8], and is further extended to systems of the form ẋ(t) = f (x(t), w(t)) in [2]. In both cases a set S is positively
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FIGURE3 Illustrations: (a) Types of solutions to the problem of finding an RFIS. (b) An illustration of the quantity �(�(x),N(x))
at a point x ∈ ℝ2. The magnitude of the angle between vector �1 and the normal vector N is bigger than the magnitudes of the
angles between vectors �2 and N, �3 and N. All these angles are acute, so by properties of the cosine function, the value of the
cosine of the angle between vector �1 and the normal vector N is the smallest compared to the other two vectors.

invariant if f (⋅) ∈ S (x) for all x ∈ S . This can be replaced by f (⋅) ∈ S (x) for all x ∈ )S [8], where )S denotes the boundary
of S . As mentioned in [8], the geometric interpretation of the above results is the following.

Definition 2 (Boundary condition). If for x ∈ )S the derivative ẋ(t) points inside S or is tangential to S , then the solution
x(t) stays in S .

The above stated boundary condition can be intuitively understood as follows. Consider particles suspended in a flow field.
If at every point on the boundary of a closed set, any flow is directed only inward into the set, or at worst directed along the
boundary of the set, then no particles can ever leave such a set. Because the moment a particle reaches the set boundary, a
particle is always acted upon by a flow which pushes it inside the set, or pushes it along the boundary of the set, but never pushes
it outside the set, simply because the flow never takes such an outward flowing direction. Thus motivated, our work focuses on
finding an approximation of the smallest RFIS which we define as follows.

Definition 3 (Approximation of the smallest RFIS). An approximation of the smallest RFIS for the system in (1), is a star-shaped
set in B ⊂ ℝ2 whose boundary is a simple closed curve such that the above boundary condition is satisfied, with disturbance
�(⋅) ∈ [−�0, �0] × [−�0, �0], and such that this set has the smallest area.

Consider a star-shaped set with a polygonal boundary such that the boundary doesn’t intersect with itself, i.e. the boundary
is a simple closed curve. Now consider triangles formed by joining line-segments from a point x̄ in the interior of such a set,
with two consecutive vertices of the polygonal boundary. The sum of the areas of all such triangles, is the area of the polygon.
Thus minimizing the area of the polygon requires minimizing the area of each triangle, which can be achieved by reducing the
lengths of the sides of the triangles. Next, it is shown that existing path planning algorithms can efficiently solve the problem of
finding a star-shaped polygonal set satisfying the boundary condition, and minimize its area.

3.3 Discretization of the search space
Let us begin with an initial guess for the smallest RFIS called B. A naive, brute force approach to find the smallest RFIS
would involve picking any n random points a1, a2,⋯ , an, then joining consecutive points a1, a2;a2, a3; a3, a4;⋯ ; an−1, an, by line
segments to form a simple closed curve, and then verifying if definition 3 holds for a set with the above simple closed curve as
boundary. This process needs to be repeated an infinitely many number of times, until a result is achieved. Such a process may
never end. Then, one can resort to Lyapunov based methods, which yield conservative results. So to get less conservative results,
but also to reduce the number of points within B which need to be examined, we discretize the space in which an approximation
of the smallest RFIS is to be found, as follows. Consider set B, and a point x̄ located in its interior. A radial grid is superimposed
on B with grid lines emanating outward from x̄. This particular grid choice helps find star-shaped sets. To create this grid,
selectN + 1 distinct points {b0, b1,⋯ , bN} from the boundary of B. Then connect x̄ to each point b0, b1,⋯ , bN . Let the index
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FIGURE 4 (a) Discretizing the search space to find the smallest RFIS (dotted ellipse) contained within a initial guess set B.
The shaded circle is a point x̄ located within B. (b) Embedding a directed graph structure - only partial graph structure shown.

i ∈ {0, 1,⋯ , N}. For simplicity, choose bi so that the angle �i between each segment seg
(

bi; x̄
)

and the x-axis is 2�i
N+1

. The
points b0, b1, b2, and bN are indicated on the boundary of the square set in Figure 4(a). The set B is convex by choice, and x̄
is in the interior of B. So, B contains all line segments joining x̄ to each point bi by construction, i.e. it is star-shaped. Next,
discretize each segment seg

(

bi; x̄
)

into n + 1 grid points pij where i ∈ {0, 1,⋯ , N}, j ∈ {0, 1,⋯ , n}, and pij = bi +
j(x̄−bi)
n

.
Let set i be a set of grid points {pij ∈ seg

(

bi; x̄
)

}. The sets 0 to N are illustrated by dashed line segments in Figure 4.
The grid points pij belonging to each set i are marked by circles. Further, embedding the graph structure described in the
following sub-section, allows converting the problem of computing an approximation of the smallest RFIS intoN + 1 separate
unconstrained optimization problems.

3.4 Embedding a directed graph structure
To produce positively oriented simple closed curves around x̄ ∈ B, the following graph structure is proposed. Excluding x̄,
connect every grid point in set i to every grid point in set i+1. Do not connect any grid point in a set i to any other grid
point in i, or to any grid point in set i−1, i.e. paths cannot go radially towards x̄ or clockwise around x̄. To produce closed
paths, the index i wraps around i.e. i + 1 = 0 if i = N , and i − 1 = N if i = 0. This connects grid points (excluding x̄) in set
N to grid points in set 0. An illustration of this graph structure, which is named G′, is seen in Figure 4(b). Paths exist from
grid points p00, p01, p02 ∈ 0 directed to grid points p10, p11, p12 ∈ 1. Similarly, directed paths exist from point pN2 ∈ N , to
points p00, p01, p02 ∈ 0.
By construction, if a set of paths is chosen from graph G′ to form a directed simple closed curve, then the set formed by the

region enclosed by such a curve contains x̄. This is due to the fact that by-construction such a set formed is a star-shaped set
with a simple closed curve boundary. The structure of graph G′ is chosen to help produce star-shaped sets, which are essential
to find a set of least area, as said in Section 3.2.

3.5 Formulation of an optimization problem
The task of finding a smallest RFIS whose boundary is a simple closed curve involves picking points from the graph G′ so that
a polygonal set is formed. So for each edge of the polygon two points must be picked. Suppose for a particular edge, two points
pij ∈ i, and p(i−1)k ∈ i−1 are picked where i ∈ {0, 1,⋯ , N}, j ∈ {0, 1,⋯ , n}, then let

N(p(i−1)k, pij) = Γ�∕2(pij − p(i−1)k), (2)

The symbol Γ�∕2 represents the rotation matrix in ℝ2, i.e.

Γ�∕2 =
[

cos(�∕2) − sin(�∕2)
sin(�∕2) cos(�∕2)

]

=
[

0 −1
1 0

]

. (3)
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The definition of vectorN(p(i−1)k, pij) is understood as follows. The goal is to construct a positively oriented simple closed curve,
which forms the boundary of the smallest RFIS (a polygon). A segment seg

(

p(i−1)k; pij
)

joining points pij , p(i−1)k is an edge of
a polygon. This segment seg

(

p(i−1)k; pij
)

is to be tested to find if it qualifies as a part of the boundary of the required smallest
RFIS, i.e. if the boundary condition is satisfied. By definition, a positively oriented simple closed curve has its interior on the
left, and the exterior on the right when the curve is traced anticlockwise. Also by definition of such a curve, the positive direction
of the normal vector points inwards (i.e. to the left). This is why the definition in (2) uses a rotation matrix which turns the
candidate segment seg

(

p(i−1)k; pij
)

anticlockwise by �∕2 radians to get an estimated direction of a “normal" vectorN(p(i−1)k, pij).
Further the task of testing if seg

(

p(i−1)k; pij
)

satisfies the boundary condition, is done as follows. Let,

F(x) = {f (x) + �(⋅)|x ∈ ℝ2, �(⋅) ∈ {d0,⋯ , ds} × {d0,⋯ , ds}}, (4)

here f (⋅), �(⋅) are from (1), and dn̄ = −�0+
2n̄�0
s

, n̄ = {0, 1,⋯ , s}, where s ∈ ℕ. The set F(x) contains all vectors which satisfy
(1), at a point x ∈ ℝ2, and evaluated over a set of possible discrete disturbances valued in , i.e. [−�0, �0] × [−�0, �0]. Note that
to compute an RFIS, the analytical form of �(t) is not needed. Only, the maximum, minimum values that each component of
�(t) can assume, are needed to sample the disturbance values in the set  . Further let two points pij ∈ i, and p(i−1)k ∈ i−1
be given, and consider the following.

�⋆(pij) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

argmin
�(pij) ∈ F(pij),

⟨N(p(i−1)k, pij), �(pij)⟩
‖

‖

‖

N(p(i−1)k, pij)
‖

‖

‖

‖

‖

‖

�(pij)
‖

‖

‖

, if ‖N ‖ ‖ � ‖ ≠ 0

N(p(i−1)k, pij), if ‖N ‖ ‖ � ‖ = 0

(5)

The vector �⋆(pij) represents a vector for which the term ⟨N(p(i−1)k,pij ),�(pij )⟩
‖
N(p(i−1)k,pij )‖‖ �(pij )‖

has minimum value. This term is the cosine of
the angle between the vector N(p(i−1)k, pij), and all vectors �(pij) ∈ F(pij) satisfying (1) and affected by all possible disturbance
values that �(⋅) can take. The term ⟨N(p(i−1)k,pij ),�(pij )⟩

‖
N(p(i−1)k,pij )‖‖ �(pij )‖

can take values in [−1, 1]. Any vector �(pij) whose angle with respect
to N(p(i−1)k, pij) ∈ [−90, 90] degrees (i.e. cosine of such an angle belongs to [0, 1]), is a vector which points towards the ‘left’
of seg

(

p(i−1)k; pij
)

, or points along seg
(

p(i−1)k; pij
)

. If such a seg
(

p(i−1)k; pij
)

is selected as a candidate edge of a polygonal
set, and subsequent such choices are made to produce a polygon with a positively oriented simple closed curve boundary,
then the edges of this polygonal set would satisfy the boundary condition. Thus enforcing the boundary condition for every
seg

(

p(i−1),k; pij
)

requires finding vectors for every seg
(

p(i−1),k; pij
)

, for which the term ⟨N(p(i−1)k,pij ),�(pij )⟩
‖
N(p(i−1)k,pij )‖‖ �(pij )‖

has minimum value.
And by the definition of the cosine function, if this minimum value is positive, this implies that a given seg

(

p(i−1)k; pij
)

satisfies
the boundary condition. Thus we define, the cosine of the angle between �⋆(pij), and

�
(

�⋆(pij),N(p(i−1)k, pij)
)

=
⟨N(p(i−1)k, pij), �⋆(pij)⟩

‖

‖

‖

N(p(i−1)k, pij)
‖

‖

‖

‖

‖

‖

�⋆(pij)
‖

‖

‖

, (6)

and N(p(i−1)k, pij) as per (6). Also, from the above discussion, enforcing the boundary condition requires �(⋅, ⋅) ≥ 0 for
every seg

(

p(i−1)k; pij
)

. The quantity � ((�(⋅),N(⋅))) is illustrated in Fig. 3 (b). It is worth noting that in Fig. 3 (b) the quantity
� ((�(⋅),N(⋅))) is in terms of the variable x ∈ ℝ2 (a continuous spatial variable). However for computation purposes we have
to discretize the search space, as described in section 3.3. So here, and from now on the quantity � ((�(⋅),N(⋅))) is written in
terms of a point pij in the discretized space. Also the normal vector cannot be defined with relation to a smooth curve as shown
in Fig. 3 (b) because we are trying to reconstruct/find piece by piece, the curve which will form the boundary of the required
smallest RFIS. So a normal vector perpendicular to a segment of such a curve being sought is represented byN(p(i−1)k, pij), here
p(i−1)k, pij are endpoints of the segment under consideration.
Now the problem of computing an approximation of the smallest RFIS can be formulated as the following optimization

problems. For each i ∈ {0, 1,⋯ , N}, given a point p(i−1)k ∈ i−1, k ∈ {0, 1,⋯ , n} find a point p⋆ij ∈ i minimizing the
following

i=N
∑

i = 0
j ∈ {0, 1,⋯ , n}

c(p(i−1)k, pij), (7)

where
c(p(i−1)k, pij) = �(�(�⋆(pij),N(p(i−1)k, pij))) +

‖

‖

‖

pij − x̄
‖

‖

‖

(8)

This article is protected by copyright. All rights reserved.



8

and

�(x) =

{

x, if x ∈ [0, 1]
g̃, if x ∈ [−1, 0), where g̃ > 0.

(9)

Equations (7)-(9) can be understood as follows. The goal is to use path planning algorithms to solve (7) and get points which
can be joined by line segments to form a polygonal set which is also the smallest RFIS. Suppose it takes a certain cost c(pij , p(i−1)k)
to traverse along seg

(

p(i−1)k; pij
)

which is an edge of a polygon, (7) represents the total cost to traverse the boundary of the
polygon. The first term on the R.H.S. of (8) is called the boundary criteria checker term, because it represents a component
of the cost which ensures that every seg

(

p(i−1)k; pij
)

satisfies the boundary condition. So whenever an argument �(⋅, ⋅) ≥ 0
is passed to the function �(⋅), the output is the argument itself, however if �(⋅, ⋅) < 0, then the function �(⋅) outputs a certain
positive value g̃. Lemma 1 shows that if g̃ is a sufficiently large positive number, then the boundary condition is satisfied for
seg

(

p(i−1)k; pij
)

. The second term in (8) penalizes points pij which are far from the point x̄ ∈ B. If each point pij ∈ i is
picked as close as possible to x̄, then this reduces the areas of the triangles with vertices pij , x̄, p(i−1)k, thus reducing the area
of the overall polygonal set as discussed in Section 3.2. Because each term in (8) is positive, minimizing the overall cost in (7)
minimizes c(⋅, ⋅) in (8) for each i ∈ {0, 1,⋯ , N}, and thus satisfies the requirements of definition 3. A path planning approach,
discussed below, can solve the above optimization problems.

4 LEVERAGING PATH PLANNING ALGORITHMS

The following sections first provide some background information about the A∗ path planning algorithm, and then provide
information on how it is used in this paper.

4.1 Background information about the A∗ algorithm
Figure 5 shows a graph with a source node (shaded in gray), a goal node (shaded solid black), and the current node at which
path planning has reached i.e. node ‘n’. The numbers mentioned on the links in Fig. 5 are the path costs, solid paths represent
paths already taken to reach node ‘n’, and the dashed paths represents paths not taken yet. The task for the A∗ path planning
algorithm is to find a least cost path from the source node to the goal node. For this, A∗ uses costs calculated as follows. The
cost to get to node ‘n’ from the source is 2 + 3 = 5, which is represented as g(n), and the cost to go from node ‘n’ to the goal
node is represented as ℎ(n). This second cost function ℎ(n) is a heuristic cost, i.e. based on experience. When these costs are
added, it gives total navigation cost f (n) = g(n) + ℎ(n) at a node ‘n’. It is realistic to assume that actual values of g(n), ℎ(n) are
not available accurately. So, the A∗ algorithm [13] uses an evaluation function of the form f̂ (⋅) = ĝ(⋅) + ℎ̂(⋅). Here ĝ(⋅) is the
estimated cost to go from a source node to a given node ‘n’, and ℎ̂(⋅) is the estimated cost-to-go to a goal node from a given
node ‘n’. The functions ℎ̂(⋅) and ℎ(⋅) are known as estimated, and actual heuristic costs. The function ℎ̂(⋅) is chosen based on
experience. As long as ℎ̂(⋅) ≤ ℎ(⋅), and the actual cost g(⋅) is positive for traveling between any two consecutive nodes in a given
graph, then the A∗ algorithm terminates and produces an optimal path [13] i.e. minimizes f̂ (⋅). These details can be found in
[13, Theorem 1]. As an example of a heuristic cost, we can see that the cost to reach the goal node from any node in Fig. 5, is

Source

Goal

2 3

4
6

10

1

2

2

8
1

Node 
n

FIGURE 5 An illustration for A∗ based path planning.
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at least 1. So a choice for an estimated heuristic cost function could be ℎ̂(n) = 1, this way the requirement ℎ̂(n) ≤ ℎ(n) is met.
For further detailed information on A∗ readers are referered to [13].

4.2 The proposed algorithm for finding an approximation of the smallest RFIS
Path planning algorithms need a graph, a starting point (source node), endpoint (goal node), and an evaluation function to
estimate the cost of a path. Readers are directed to [13] for details on path planning. Finding the smallest RFIS requires the set of
source nodes and goal nodes to be the same, so that the starting and ending point of the closed path coincide. The A∗ algorithm
[13] does not start planning a path if the source node belongs to the goal set. To separate the source nodes from the goal set, a
path must be planned in at least two parts. The first part originates at a source node belonging to the set 0 and terminates in
the setN ′ , whereN ′ = ⌊

N∕2⌋. The second part originates at the node where the first part of the path terminated in a setN ′ ,
and the goal set is the set0.
Given a graph G′ as mentioned in Section 3.4, the following cases are considered for computing the evaluation function

f̂ (⋅) required by A∗ to find an optimal path, which is hypothesized to be the boundary of the smallest RFIS. For (10)-(11),
i ∈ {1,⋯ , N}, and j, k, l ∈ {0, 1,⋯ , n − 1}. When traveling from a point (node) p(i−1)k ∈ i−1 to a point (node) pij ∈ i,

f̂ (p(i−1)k, pij) = ĝ(p(i−1)k, pij) + ℎ̂(p(i−1)k, pij), (10)

where ℎ̂(p(i−1)k, pij) = 0, and

ĝ(p(i−1)k, pij) = c(p(i−1)k, pij) + ĝ(p(i−2)l, p(i−1)k), (11)

with the only exception that the initial cost ĝ(pNl, p0k) = 0 for all l, k ∈ {0, 1,… , n − 1}.
Now, Algorithm 1 presents the pseudo code proposed to find an approximation of the smallest RFIS, the operation of

Algorithm 1 is described in the following subsection.

4.3 Operation of the RFIS computation algorithm
The quantity r in Algorithm 1 is the iteration count with the initial value 1, rmax represents the maximum number of iterations.
The values of n,N control the discretization of the search space, the value of s controls the discretization of the disturbance set.
The sequence P0 is initialized to {b0, b1,⋯ , bN} where each point bi ∈ i, i ∈ {0, 1,⋯ , N}, lies on the boundary of the initial
guess B. Algorithm 1 generates sequence Pr which iteratively approaches the desired RFIS boundary. The variable � measures
if Pr has converged to a particular sequence of points, � is initialized to a value greater than �, where � is a small non-zero
positive constant chosen by the user.
Let p̃r,0 represent a source node p0j ∈ 0. During every iteration r, the first segment of the resulting path is planned starting

from the point p̃r,0 to the goal setN ′ , whereN ′ = ⌊

N∕2⌋. The points (nodes) picked byA∗ from the sets0,⋯ ,N ′ are stored
into the sequence Pr in the order {p̃r,0, p̃r,1, p̃r,2,⋯ , p̃r,N ′} The above process is shown graphically in Fig. 6. The second segment
of the resulting path is planned starting from the point p̃r,N ′ ∈ N ′ to the goal set0. The sequence Pr is updated with the points
picked by A∗ from the sets N ′+1,⋯ ,N as Pr = {p̃r,0, p̃r,1,⋯ , p̃r,N ′ , p̃r,(N ′+1),⋯ , p̃r,(N−1), p̃r,N}, where p̃r,i ∈ i, and i ∈
{0, 1,⋯ , N}. Also let the sequenceΨ0 = {0,⋯ , 0} be initialized withN zeros as shown in Algorithm 1. SequenceΨr is updated
in each iteration r with boundary criteria checker terms as defined in (8). By definition and from the discussion following (8),
given two points p̃r,(i−1), p̃r,i the boundary criteria checker term for seg

(

p̃r,(i−1); p̃r,i
)

is �
(

�(�⋆(p̃r,i),N(p̃r,(i−1), p̃r,i))
)

.
The algorithm continues until the given maximum number of iteration rmax are performed, or if � < �, i.e. the sequence Pr

has converged to some sequence of points chosen by the A∗ algorithm. If the maximum number of iterations are reached and
� > �, this means Algorithm 1 has not converged to a particular sequence of points, thus the algorithm exists by returning
empty sequences Pr,Ψr. On the other hand, if in a certain iteration r < rmax, we have � < �, then the Algorithm 1 checks if
g̃ ∈ Ψr. If true, it means that for the least cost path that Algorithm 1 could find in the given initial set B, there is at least one
seg

(

p̃r,(i−1); p̃r,i
)

that does not satisfy the boundary condition, and thus the result output by the algorithm is not an RFIS. If
either of the above events occur, the user can change the initial guess, or change the location of x̄, or change the spatial and
disturbance set discretization by changing values of n,N, s, or increase rmax and run Algorithm 1 again. Further if � < �, and
g̃ ∉ Ψr then no seg

(

p̃r,(i−1); p̃r,i
)

violates the boundary condition, and thus it is hypothesized that the result output by Algorithm
1 is a candidate for an approximation of the smallest RFIS. The following section proves the above hypothesis.
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Algorithm 1 Compute an approximation of a robust forward invariant set
Data: Sets0 toN , graph G′, f̂ (⋅), p0j ∈ 0, positive numbers �, g̃,∈ ℝ, and n,N, s, rmax ∈ ℕ.
Result: Pr,Ψr
1: Let r = 1, N ′ = ⌊

N∕2⌋ , � = 2�, P0 = {b0, b1,⋯ , bN};
2: Let p̃r,0 = p0j ∈ 0,Ψ0 = {0, 0, ⋅ ⋅ (N elements) ⋅ ⋅, 0};
3: while (� > �) and (r ≤ rmax) do
4: Use A∗ to find an optimal path from p̃r,0 ∈ 0 to the goal setN ′ ;
5: Let p̃r,N ′ represent the point picked by A∗ in line 4 from the set N ′ ;
6: Store the points obtained above as the sequence Pr = {p̃r,0,∈ 0, p̃r,1 ∈ 1,⋯ , p̃r,N ′ ∈ N ′}
7: Store boundary criteria checker terms in sequence Ψr =

{

�
(

�(�⋆(p̃r,1),N(p̃r,0, p̃r,1))
)

,⋯ , �
(

�(�⋆(p̃r,N ′ ),N(p̃r,(N ′−1), p̃r,N ′ ))
)}

;
8: Use A∗ to find an optimal path from p̃r,N ′ ∈ N ′ to the goal set0;
9: Let p̃r,N represent the point picked by A∗ in line 8 from the set N ;

10: Let p̃r+1,0 represent the point picked by A∗ in line 8 from the set 0;
11: Update sequence Pr as Pr = {p̃r,0 ∈ 0,⋯ , p̃r,N ′ ∈ N ′ , p̃r,N ′+1 ∈ N ′+1,⋯ , p̃r,N ∈ N};
12: Update sequence Ψr as Ψr =

{

⋯ , �
(

�(�⋆(p̃r,(N ′+1)),N(p̃r,N ′ , p̃r,(N ′+1)))
)

, ⋯ , �
(

�(�⋆(p̃r,N ),N(p̃r,(N−1), p̃r,N ))
)}

;
13: Compute �r = d2(Pr, Pr−1);
14: Let � = �r, p̃r,0 = p̃r+1,0 ∈ 0;
15: if (� > �) and (r < rmax) then
16: r = r + 1;
17: else if (� > �) and (r = rmax) then
18: display(“No approximation of smallest RFIS found in rmax iterations.”);
19: Pr = {},Ψr = {};
20: Go to line 31;
21: else if (� < �) then
22: if g̃ ∉ Ψr then
23: display(“Approximation of RFIS found.”);
24: Go to line 31;
25: else
26: display(“Polygonal set found in iteration r, but boundary condition violated.”);
27: Go to line 31;
28: end if
29: end if
30: end while
31: return Pr,Ψr;

4.3.1 Tie breaker rule
For any i ∈ {0, 1,⋯ , N} it is possible that when the A∗ algorithm is trying to find an optimal path from a point p(i−1)k ∈ i−1
to the set i, there are multiple pij ∈ i providing a path of equal cost. In such situations a point pij with the largest index
j ∈ {0, 1,⋯ , n} such that the boundary condition is satisfied, is selected as a solution to (7). This guarantees a unique solution
to (7) for all i ∈ {0, 1,⋯ , N}. Also based on the discretization of the search space, choosing a point pij with the largest value
of j gives a point closer to x̄, which reduces the area of an RFIS.

4.3.2 Zero cost ℎ̂(⋅)
Setting ℎ̂(⋅) = 0, may appear to make using A∗ algorithm unnecessary, and may seem to make using Djikstra’s algorithm more
appropriate. Also, even if setting ℎ̂(⋅) = 0 may result in Djikstra’s algorithm being used, yet using the notation as mentioned
in section 4.1, allows us to mold the formulation along the lines of [13], and further allows usage of results from [13] to prove
convergence of the proposed algorithm. This is a motivating factor for setting up notation related to A∗ and using it in this work.
Also, incorporating any experience to choose an appropriate function ℎ̂(⋅) has potential to reduce computation time significantly
[13]. For example, suppose after a few runs of the proposed algorithm it is seen that the algorithm is not converging to a convex
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FIGURE 6 An illustration of planning the required path in two halves, first from 0 to N ′ , and then from N ′ back to 0.
Note that the set0 is shown to not lie on a horizontal line segment because any set can be chosen to be the set0 as desired.

shaped set, but to a star shaped set. Then, at least from the results, an idea of the general size of the set can be approximately
formed. Based on this the ℎ̂(⋅) cost can be updated at each node to allow for possibly faster convergence of the algorithm proposed
in this work.

5 MATHEMATICAL JUSTIFICATION

The following result establishes lower bounds that g̃ in (9) must satisfy so that given a point p(i−1),k ∈ i−1, the next point pij ∈
i is picked such that �(�⋆(pij),N(p(i−1,k), pij)) ∈ [0, 1], and as mentioned briefly after (6), having �(�⋆(pij),N(p(i−1,k), pij)) ∈
[0, 1] is required to enforce the boundary condition along seg

(

p(i−1)k; pij
)

. Thus Lemma 1 establishes conditions on g̃ which
are required for enforcing the boundary condition. Intuitively, this result can be understood as follows. The cost functions
described in section 3.5 are setup such that if any segment is chosen by the proposed algorithm to be a part of the boundary of
the computed RFIS, then the least navigation cost occurs along segments (paths) located along the true boundary of the RFIS (in
other words along points/paths meeting the boundary condition). So to prevent the proposed algorithm from picking a point,
which if chosen, would violate the boundary condition, such points are simply assigned an extremely high navigation cost, so
that the path planning algorithm does not pick them. In fact, it turns out that the exact value of the cost to be assigned to such
points, so they are not chosen, is not hard to find. Such a cost assignment is done in our formulation by assigning a value for the
constant g̃, details for which are available in Lemma 1 below.

Lemma 1. Let i ∈ {0, 1,⋯ , N}, and j, k ∈ {0, 1,⋯ , n}, and x̄ be any point in the interior of the initial set B ⊂ ℝ2. Given a
point p(i−1)k ∈ i−1, suppose there exists at least one j such that �(�⋆(pij),N(p(i−1)k, pij)) ∈ [0, 1], where pij ∈ i. Let pij∗ be
a node chosen by A∗ . If the constant g̃ > 1 + maxi,j

(

‖

‖

‖

pij − x̄
‖

‖

‖2

)

, then �(�⋆(pij∗),N(p(i−1)k, pij∗)) ∈ [0, 1].

Proof. Given a point p(i−1)k, f̂ (p(i−1)k, pij) is the cost of traveling to a point pij as per the evaluation function in (10). In every
step of execution of theA∗ algorithm this term f̂ (p(i−1)k, pij) is evaluated [13]. Evaluation of f̂ (p(i−1)k, pij) requires evaluation of
ĝ(p(i−1)k, pij) in (11), c(p(i−1)k, pij) in (8), �

(

�(�⋆(pij),N(p(i−1)k, pij))
)

in (9), and �(�⋆(pij),N(p(i−1)k, pij)) in (6). The quantity
�(⋅) is the cosine of the angle between vectors �⋆(pij), andN(p(i−1)k, pij) and so �(⋅) ∈ [−1, 1]. If �(⋅) ∈ [−1, 0), then by definition
in (9) we have �(�(⋅)) = g̃, and if �(⋅) ∈ [0, 1], then by definition in (9) we have �(�(⋅)) ∈ [0, 1]. Now let pij′ ∈ i be a point
such that �(�⋆(pij′),N(p(i−1)k, pij′)) ∈ [−1, 0), and let pij∗ ∈ i be a point such that �(�⋆(pij∗),N(p(i−1)k, pij∗)) ∈ [0, 1]. Then

This article is protected by copyright. All rights reserved.



12

by the above discussion, and by the definitions of f̂ (⋅, ⋅), and c(⋅, ⋅) we have f̂ (p(i−1)k, pij′) = g̃ +
‖

‖

‖

pij′ − x̄
‖

‖

‖

+ ĝ(p(i−2)l, p(i−1)k).

And 1 + ‖

‖

‖

pij∗ − x̄
‖

‖

‖

+ ĝ(p(i−2)l, p(i−1)k) ≥ f̂ (p(i−1)k, pij∗). So it is trivial to see that if g̃ > 1 + maxi,j
(

‖

‖

‖

pij − x̄
‖

‖

‖2

)

, then the
cost f̂ (p(i−1)k, pij′) to go from p(i−1)k ∈ i−1, to pij′ ∈ i is greater than the cost f̂ (p(i−1)k, pij∗) to go from p(i−1)k ∈ i−1, to
pij∗ ∈ i. But the A∗ algorithm always picks the optimal path, and by the assumptions of this lemma, a point pij∗ is available
such that �(�⋆(pij∗),N(p(i−1)k, pij∗)) ∈ [0, 1]. Thus, A∗ will pick point pij∗ so that �(�⋆(pij∗),N(p(i−1)k, pij∗)) ∈ [0, 1]. This
completes the proof.

The next result shows that Algorithm 1 terminates in a finite number of iterations, and as the discretization of the search space
becomes finer, the output of Algorithm 1 tends to an RFIS. The idea on which the below result is based is as follows. Suppose
a set is picked in which we wish to seek an RFIS. If there is an RFIS in this set, then the proposed algorithm can converge to
it, only if the discretization of the search space is such that all points belonging to the boundary of this RFIS belong to the sets
i in graph G′. So assuming that the discretization is so, the algorithm proposed in this work searches for the RFIS. Because
as mentioned before Lemma 1, the formulation is such that the least navigation cost occurs along the boundary of the RFIS.
So the proposed path planning algorithm at some instant (i.e. on some segment set i) will thus pick a point from among the
points in graph G′ that belongs to the boundary of the RFIS. Following this, to stay on the least cost path, every point further
picked for navigation will also be on this least cost path, i.e. the boundary of the required RFIS. If this keeps happening, and
because the path being planned is a closed path, so at some instant, the proposed algorithm will simply be picking points it has
already picked. That is, every point picked on every segment set Ai in a current iteration will be the same as the point picked in
the last iteration on every set Ai. If a sequence of these points is maintained every iteration, and the points stored in a sequence
in a current iteration are compared with the points stored in the previous iteration. Then at some instant, the sequences will be
identical. And when this happens, the proposed algorithm will terminate having found the RFIS formed by segments joining
these consecutive points stored in such a sequence. However, for this to happen, the system under consideration must satisfy
some assumptions, i.e. the system must be generally well behaved in every neighborhood under consideration so that the system
behavior at one end of a particular discrete segment is not radically different from behavior at the other end. These conditions
are simply the Lipschitz conditions as mentioned below.

Theorem 1. Let i ∈ {0, 1,⋯ , N}, and j, k ∈ {0, 1,⋯ , n}, and B ⊆  ⊂ ℝ2 be a convex set. Suppose a graph
G′ ∈ B with points pij ∈ i is given, x̄ is a point in the interior of B, g̃ > 1 + maxi,j

‖

‖

‖

pij − x̄
‖

‖

‖

, and for the system
in (1), f (⋅) is L-Lipschitz locally in x ∈  ⊂ ℝ2 with L > 0, �(⋅) is -Lipschitz globally in t ∈ ℝ with  > 0. If
there exists at least one RFIS whose boundary is a simple closed curve, which is formed by joining consecutive segments
seg

(

p(i−1)k; pij
)

where points pij ∈ i, and p(i−1)k ∈ i−1, then Algorithm 1 converges to a sequence Pr in a finite num-
ber of iterations. Further, let ℛ be the set whose boundary is formed by joining the segments seg

(

p̃r,0; p̃r,1
)

, seg
(

p̃r,1; p̃r,2
)

,
⋯, seg

(

p̃r,N−1; p̃r,N
)

, seg
(

p̃r,N ; p̃r,0
)

, where p̃r,i ∈ Pr. If n,N are arbitrarily large, and  is arbitrarily small, thenℛ is an RFIS.
Furthermore,ℛ has the smallest area among all possible star-shaped RFISs that can be formed by joining consecutive segments
seg

(

p(i−1)k; pij
)

.

Proof. Algorithm 1 uses A∗ internally to pick points pij ∈ i so that f̂ (⋅) in (10) is minimized. From (7), (10) and (11) it
is seen that minimizing (10) minimizes (7). Also, it is given that there exists at least one RFIS whose boundary is a simple
closed curve, which is formed by joining consecutive segments seg

(

p(i−1)k; pij
)

where points pij ∈ i, and p(i−1)k ∈ i−1. This
coupled with the discussion of the boundary condition in section 3.5 implies that for a point p(i−1)k ∈ i−1 which belongs to
an RFIS, there exists at least one point pij ∈ i such that �(�⋆(pij),N(p(i−1)k, pij)) ∈ [0, 1]. Now there exist only a finite number
of nodes in graph G′ which are to be searched by the A∗ algorithm, and it is known that the A∗ algorithm converges in finite
iterations to its optimal path [13]. So this implies that in a certain iteration r of Algorithm 1, A∗ picks a point p(i−1)k ∈ i−1

such that p(i−1)k is a vertex of the above mentioned RFIS. Now by assumption we have g̃ > 1 + maxi,j
‖

‖

‖

pij − x̄
‖

‖

‖

and as
discussed above for a given point p(i−1),k ∈ i−1 which belongs to an RFIS, there exists at least one point pij ∈ i such that
�(�⋆(pij),N(p(i−1),k, pij)) ∈ [0, 1]. Now invoking Lemma 1 we know that A∗ picks such a point pij ∈ i, and repeating the
above argument we get that every subsequent point p(i+1)j ∈ i+1 and so on, picked by A∗ satisfies the boundary condition i.e.
�(⋅) ∈ [0, 1]. So by the definition of �(⋅) in (9) and the definition of sequenceΨr in Algorithm 1 we see that no subsequent entries
in Ψr will contain g̃. This shows why we use line 22 in Algorithm 1 to verify that the result satisfies the boundary condition,
required for an RFIS.
From the pseudocode of Algorithm 1, all points pij ∈ i picked by A∗ are stored in a sequence Pr. Further, because A∗

picks optimal points, and considering the tie-breaker rule mentioned in subsection 4.3.1 allows us to establish that for each
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i ∈ {0, 1,⋯ , N} there is a unique point p̃r,i ∈ Pr which minimizes (7). Let the simple closed curve formed by joining such
points p̃r,i be )ℛ. Note that a curve formed by joining consecutive points p̃r,i ∈ Pr is a simple closed curve by virtue of the
construction of the embedded graph structure described in Section 3.4. Now, using arguments exactly similar to the ones in the
first half of the previous paragraph we know there exists some finite iteration number r in which p̃r,i will lie on )ℛ. And now
again, because there is only one optimal simple closed curve )ℛ, and because A∗ picks optimal points, and because p̃r,i ∈ )ℛ,
implies that every subsequent point chosen by A∗ and stored in Pr will now belong to )ℛ. Therefore, it is trivial to see that
after a certain number of iterations r, points stored in Pr+1 will be identical to the points in Pr. At the end of this iteration
d2(Pr, Pr+1) = 0, and Algorithm 1 will terminate. This completes the first result required.
Now consider points p̃r,i−1, p̃r,i from Pr, where seg

(

p̃r,i−1; p̃r,i
)

is an edge forming the boundary )ℛ of the set ℛ. By con-
struction, and from Algorithm 1 we know that these points p̃r,i−1, p̃r,i are some points p(i−1)k ∈ i−1, pij ∈ i respectively.
So seg

(

p̃r,i−1; p̃r,i
)

can be represented by a seg
(

p(i−1)k; pi,j
)

. Also by Lemma 1 we know that given a point p(i−1)k ∈ i−1,
the A∗ algorithm picks a point pij ∈ i such that �(�⋆(pij),N(p(i−1),k, pij)) ∈ [0, 1]. So from the definitions of �(⋅, ⋅)
in (6), �⋆(⋅) in (5) we know 0 ≤ ⟨N(p(i−1)k, pij), �(pij)⟩ for all vectors �(pij) ∈ F(pij). Now by definition, such a vec-
tor �(pij) = f (pij) + �(⋅). For use in Algorithm 1, the set F(⋅) contains such vectors �(⋅) evaluated at discrete values that
an unknown disturbance function �(⋅) can take. However, in reality, such disturbances would be parametrized by time as
per (1). So consider �(pij) = f (pij) + �(t1), and �(y) = f (y) + �(t2), where t1, t2 are some time instants, and points
pij , y ∈ seg

(

p(i−1),k; pi,j
)

. Then from above we get 0 ≤ ⟨N(p(i−1)k, pij), �(pij) + �(y) − �(y)⟩. Re-arranging, and using prop-
erties of inner-products gives ⟨N(p(i−1)k, pij), �(y) − �(pij)⟩≤ ⟨N(p(i−1)k, pij), �(y)⟩. Now using the Cauchy-Schwarz inequality,
and then substituting �(y), �(pij) in the above, and simplifying using assumptions gives |

|

|

⟨N(p(i−1)k, pij), �(y) − �(pij)⟩
|

|

|

≤

|N(⋅)|
(

|

|

|

f (y) − f (pij)
|

|

|

+ |

|

�(t2) − �(t1)||
)

≤ N(⋅)
(

L |

|

|

y − pij
|

|

|

+  |
|

t2 − t1||
)

. Now because n,N are arbitrarily large, enabling a
fine discretization of space, so it is possible to pick points p(i−1)k, pij such that the length of segments ∈ seg

(

p(i−1),k; pi,j
)

are arbitrarily small, so it is possible to have |

|

|

y − pij
|

|

|

< �
2L

, and similarly as  is arbitrarily small, it is possible to have

 |
|

t2 − t1|| <
�
2
for any given t2, t1. This provides

|

|

|

⟨N(p(i−1)k, pij), �(y) − �(pij)⟩
|

|

|

< �, i.e. from above−� < ⟨N(p(i−1)k, pij), �(y)−
�(pij)⟩ ≤ ⟨N(p(i−1)k, pij), �(y)⟩. So we see that as n,N become larger, and  becomes smaller, then � → 0, i.e. for any point
y ∈ seg

(

p(i−1),k; pi,j
)

, the boundary condition is satisfied. Also this implies that at vertices pij the vectors �(⋅) ∈ F(⋅) satisfy
boundary conditions along two segments which have a common vertex at pij . This shows that any point on the boundary )ℛ
satisfies the boundary condition, for disturbance �(⋅) satisfying given assumptions, and thus the set ℛ is an RFIS. Further
this set is formed by minimizing (7), the second term of which minimizes the distance of each point pij ∈ i from an interior
point x̄. This results in decreasing the area of triangles p(i−1)k, pij , x̄. Because all points pij ∈ i are on the optimal path, no
further decrease in area of individual triangles p(i−1)k, pij , x̄ is possible. So summing the areas of all such triangles which lie in
the interior ofℛ by construction, we have the RFISℛ with least possible area. This completes the proof.

The above result shows that Algorithm 1 outputs a set which is an RFIS of minimum area. By construction the set is star-
shaped, so this also satisfies the definition of an approximation of the smallest RFIS. Further, the initial guess B is not needed to
be invariant, although it is required to contain an RFIS. Also the sequence Ψr acts as an indicator sequence, because it indicates
to the user if the boundary condition is violated, by inserting g̃ ∈ Ψr. This is useful if it is not known whether an initial guess B
contains any RFISs. It is worth mentioning that despite the conditions on the Lipschitz constant  for the disturbance function
�(⋅) in the above result, simulation results in Section 6 show the versatility of Algorithm 1 developed in this paper, when used
with different disturbance functions. Relaxing the assumptions for the above result, and extending it to higher dimensions is left
for future efforts.

6 SIMULATIONS

Consider the curve tracking problem [22] as given below.

�̇ = − sin(�) (12)
�̇ = (� − �0) cos(�) − � sin(�) + �(t). (13)

The values of certain constants used for testing this system in (12)-(13) with the proposed RFIS computation Algorithm 1 are
�0 = 0.15, �0 = 1, � = 6.42 (this applies to all results mentioned here in this section). The following subsections provide an
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FIGURE 7 Test 1: Results of choosing different initial guesses
B along with corresponding choices for x̄.
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FIGURE 8 Test 2: Results using a disturbance function of the
form �(t) = �0 sin(t).

analysis of the results obtained on performing various tests with the proposed algorithm. Seven tests are considered as follows.
Test 1 considers the effects of changing initial guesses i.e. set B, and changing locations of the point x̄, on the output of the
proposed algorithm. Tests 2 to 4 consider the effects of different bounded disturbance functions �(t) on the output of the proposed
RFIS comutation algorithm, when used with the problem in (12)-(13). Tests 5 and 6 plot trajectories (solutions) of the problem
in (12)-(13) for ten random intial conditions in the area of interest. The time required for calculating these is noted down. These
results are provided as a means to compare the algorithm in this paper with one which would simply compute simulated system
trajectories and hope to construct an estimate of the smallest RFIS from such simulation. This is done because a full fledged
comparison of the proposed approach with other approaches existing in the literature is completely out of the scope of the current
manuscript, but at least such a test shows the advantages of the algorithm proposed in this work when compared to a naive
unguided search. Test 7 simply shows that the algorithm proposed produces correct and expected shapes for the RFISs, this is
verified by testing the proposed algorithm with a simple system that has nested circular trajectories.

6.1 Test 1
Figure 7 shows results output from Algorithm 1 for different (rectangular) initial sets B, and corresponding different x̄, when
tested for finding RFISs for the system given in (12)-(13). The outer square sets with solid lines are the different initial guesses
B. The inner rhomboidal sets with dotted lines are the outputs. To read Fig. 7, readers must look for points having the same color.
For Example, the solid purple rectangular set with square markers is an initial guess B for a particular test run. Corresponding
to this, the single purple point (square marker) at (1,0) is x̄ for this run, and the dotted purple rhombus shaped set with square
markers is the output. Similarly, the solid black rectangular set with triangular markers is an initial guess B for the next test run.
Corresponding to this, the single black point (triangular marker) at approximately (0.95,-0.01) is x̄ for this run, and the dotted
black rhombus shaped set with triangular markers is the output. This output set almost overlaps with a few other output sets in
Fig. 7. This is not bad, because searching around slightly different points i.e. x̄ = (1,0) or (0.95,-0.01), should not provide widely
different results for an RFIS (if there is an unique smallest RFIS). A similar discussion as above applies for the sets and points
shown in red and blue in Fig. 7, so the discussion has not been repeated. It is worth noting that the initial guess set marked with
a solid blue line and blue asterisks as markers is the same as the initial guess set shown with solid black lines and triangular
markers. Thus as seen from Fig. 7 changing the sizes of the initial guesses, or the discretization, or the location of x̄ has relatively
less effect on the output. Although x̄ located centrally within B appears to provide smoother boundaries of sets. For the first try
(purple set with square markers), the following values were used for Algorithm 1, n = 51, N = 59, s = 630, rmax = 10, � =
0.1, g̃ = 4.5035 × 1015. All runs of Algorithm 1 which produced Fig. 7 ended in 4 iterations, and took about 3 to 5.6 minutes
to terminate and output results. Note that all results are obtained using MATLAB on a Microsoft Surface Pro 4 dual-core tablet
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FIGURE 9 Test 3: Results using a disturbance function of the
form �(t) = 2 × 0.087

�
tan−1(t).
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FIGURE 10 Test 4: Results using a disturbance function of the
form �(t) = U(−�0, �0).

PC with 4GB RAM, 2.5GHz CPU. The times reported above include time for setting up storage variables, and post-termination
plotting.

6.2 Tests 2 to 4
Figures 8 to 10 show verification of the proposed RFIS computation algorithm when tested using the problem in equations
(12)-(13) with different disturbance functions as indicated below. It is worth noting that the purple set shown in figures 8-10 is
the same purple output set shown in Fig. 7. So the amount of computation required for this is similar to that mentioned above
is around 3 to 5.6 minutes. Figure 8 shows test results when the proposed RFIS computation algorithm’s result is tested using
the problem in equations (12)-(13) along with the disturbance function �(t) = �0 sin(t). Figure 9 shows test results when the
proposed RFIS computation algorithm’s result is tested using the problem in equations (12)-(13) along with the disturbance
function �(t) = 2 × 0.087

�
tan−1(t). Figure 10 shows test results when the proposed RFIS computation algorithm’s result is tested

using problem in equations (12)-(13) along with the disturbance function �(t) = U(−�0, �0). The notation U(−�0, �0) is used to
represent a uniformly distributed random value in [−�0, �0]. For each of these tests, and in each of the figures 8-10, the initial
guess set B is shown as a solid blue rectangle, and the pink/purple starred set is the computed RFIS output by the proposed
Algorithm 1. The arrows in figures 8-10 show the vector field directions, and solutions are shown in black dashed lines starting
from arbitrarily chosen initial conditions shown by unfilled black square markers. From figures 8-10 we see that the set produced
i.e the pink/purple starred set output by the proposed RFIS computation algorithm is invariant, because the solutions (dashed
black lines) do not appear to leave the pink/purple starred set once they enter it. This is expected, and verifies that the proposed
RFIS computation algorithm works because the algorithm is used only once with the problem in equations (12)-(13), it does
not have any knowledge of the functional form of the disturbance that affects the system in (12)-(13). And when the computed
results is tested with different different disturbance functions as mentioned above, and as shown in figures 8-10, the trajectories
computed do not leave the pink/purple set with starred markers. This result shows that the proposed algorithm works and it is
not dependent on the form of the additive disturbance used, as long as the magnitude of the disturbance is known.

6.3 Test 5 and 6
While a detailed comparison of the performance of this proposed algorithm with other results from the literature is beyond the
scope of the current work, the results presented in figures 11, and 12 provide an insight into the performance gained by using a
path planning based approach for RFIS computation as opposed to using simple trajectory ensemble based RFIS computation.
Computing the trajectories shown in Fig. 11 with ten random initial conditions took around 6.507 seconds, when the problem
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FIGURE 11 Test 5: A plot of ten system solution trajectories
using a disturbance function of the form �(t) = �0 sin(t). Black
square markers show initial conditions.
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FIGURE 12 Test 6: A plot of ten system solution tra-
jectories using a disturbance function of the form �(t) =
2 × 0.087

�
tan−1(t). Black square markers show initial condi-

tions.
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FIGURE 13 Test 7: Verifying that the proposed algorithm produces correct shapes, testing on a simple problem with circular
trajectories.

in (12)-(13) is used with a disturbance of the form �(t) = �0 sin(t). Similarly, computing the trajectories shown in Fig. 12 with
ten random initial conditions took around 0.3406 seconds, when the problem in (12)-(13) is used with a disturbance of the form
�(t) = 2×0.087

�
tan−1(t). From Fig. 11, at least an idea of the smallest RFISs shaped and size can be achieved, but even doing this

with sufficient fidelity would require computing trajectories starting from several initial conditions. On the other hand while
computing the trajectories as shown in Fig. 12 takes lesser time, but these trajectories do not provide any idea about the shape or
size of the smallest RFIS. This shows that trajectory generation and subsequent RFIS computation is a time consuming process.
This is because, several (ideally infinite) trajectories need to be considered. Then a set has to be found such that the union of all
such trajectories, with all allowed functional forms of disturbances considered added to the system dynamics, stays within this
set for all time. For testing only 20 initial conditions and resulting trajectories across two types of disturbances already consumes
around 6.9 seconds. If infinitely many trajectories (or at least a large number say ten thousand trajectories are considered), a
linear estimate for computation to generate trajectories just for two cases of disturbances is 57.5 minutes. This does not even
include the time required for an algorithm which has to combine all of this information to produce an estimate for an RFIS.
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This analysis quickly shows that the proposed approach, even if it takes a few minutes to complete computation, is many times
efficient compared to a pure simulation based trajectory generation approach for computing RFISs.

6.4 Test 7
The results in Fig. 13 show the result of using the proposed algorithm to compute an RFIS for a system with the following
dynamics.

ẋ(t) =
[

0 1
−1 0

]

x(t) (14)

As is obvious from the system dynamics, it is a simple linear systemwith complex eigenvalues, as a result of which the trajectories
are circular. The equilibrium point is (0,0), and no disturbance is used for this system. Details about the discretization used
and other details about settings used for the algorithm proposed, are available as reported in [21]. Thus it is obvious from the
results seen in Fig. 13, that the proposed algorithm has the ability to produce sets of the correct shape. It is worth noting that
the smallest RFIS for the problem in (14) as tested in the absence of disturbances is the equilibrium point itself, however due to
discretization of the search space, the result achieved is the smallest set closest to the equilibrium point, that can be reached by
the proposed algorithm.

7 CONCLUSION AND FUTUREWORK

In summary, this paper presented an algorithm for finding the boundary of the smallest robust forward invariant sets (RFISs) for
two dimensional systems subject to bounded additive disturbances. It has been shown that the proposed algorithm terminates
in a finite number of iterations, and outputs an RFIS of minimal area, with precision only constrained by the discretization of
the search space. We have demonstrated that path planning algorithms can be introduced as potential numerical algorithms to
compute an RFIS. The contribution of this paper is that for the proposed algorithm, no specific form of an additive disturbance
function is required to be known to compute the smallest RFIS of a system. Only discrete values/measurements of the disturbance
function are required. This is also shown in the simulation results where the RFIS computation algorithm’s results are verified in
the presence of different bounded functions used as the additive disturbance functions affecting the system dynamics. Further,
conditions on the system dynamics, and on the disturbance function and grid discretization are provided for letting the proposed
algorithm converge to an RFIS.

7.1 Future work
The benefit of using such path planning based algorithms is computational efficiency associated with sampling of the search
space, required for computationally estimating RFISs. Future extensions to higher dimensions is underway [33]. Future efforts
may consider rapidly exploring random tree (RRT) based approaches for estimating the boundary of an RFIS. This is envisioned
keeping in mind that RRTs can operate in any dimensional space. As an example for a three dimensional problem which may
possibly be solved without using higher dimensional approaches like RRTs, the space can be divided into two dimensional
planes, with the path planning approach applied on each plane. Merging the results of each such planar search, is one possible
approach for estimating the size of an RFIS in three dimensions.
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